

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 23|P a g e

Productivity Factors in Software Development for PC

Platform

Abbas Heiat, Nafisseh Heiat

Abstract
Identifying the most relevant factors influencing project performance is essential for implementing business

strategies by selecting and adjusting proper improvement activities. The two major classification algorithms

CRT and ANN that were recommended by the Auto Classifier tool in SPSS Modeler used for determining the

most important variables (attributes) of software development in PC environment. While the accuracy of

classification of productive versus non-productive cases are relatively close (72% vs 69%), their ranking of

important variables are different. CRT ranks the Programming Language as the most important variable and

Function Points as the least important. On the other hand, ANN ranks the Function Points as the most important

followed by team size and Programming Language.

I. Introduction
Identifying the most relevant factorsin

fluencing project performance is essential for

implementing business strategies byselecting and

adjusting proper improvement activities. There is,

however, a large number of potential in fluencing

factors. There is, however, alargenumber of

potentialin fluencing factors. This paper proposes

data mining approach forid entifying the

mostrelevant factorsin fluencings of twaredev

elopment productivity for PC platform. The method

first determines the most efficient algorithms for

classifying and establishing contributing factors. The

evaluationofthe algori thms indicates adifferents

etoffactors are relevant. Moreover, application of

auto classification significantly improves the

d e c i s i o n o f c h o o s i n g a n a l g o r i t h m

interms ofaccuracyandprecision. Many software

organizations are stillpropo singunrea listic software

costs, work within tight schedules, and finishtheir

projects behind schedule and budget, or do not

complete them at all [12]. This illustrates that

reliable methods forman aging software

development effort and productivity are a key issue

in software organizations.

One essential as pect when managing

development ef fort and productivityisthe large

number of associated andunknowninfluencingfactors

o r productivity factors[23]. Identifying the

rightproductivityfactors increases the effective ness

of productivity improvement strategies by

concentrating management activities directly

onthose development processes that have the

greatest impact on productivity. On the other hand,

focusing measurement activities on a limited

number of the most relevant factorsre ducesthe costo

fquantitative project management [6].

Software development productivity is an

important project management concern. One study

reports that a 20% improvement in software

productivity will be worth $45 billion in the U.S and

$90 billion worldwide [1].As a result, a number of

empirical studies of software productivity have

appeared in the literature over the past three decades.

Scacchi has published a report that examines

empirical investigations in relation to software

development attributes, tools, techniques, or some

combination of these that have a significant impact

on productivity of software production [2]. These

studies focus on the development of large scale

software development. Twelve major software

productivity measurement studies are reviewed

including those at IBM (Albrecht [3], [4]), TRW

(Boehm [1], [5], [6], [7]), NASA (Bailey and Basili

[8]), ITT (Vosburg et.al [9]),and international

projects (Lawrence [10], Cusumano and Kemerer

[11]. In addition, Scacchi examines a number of

other theoretical and empirical studies of

programmer productivity, cost-benefit analysis, and

estimation of software cost(Thadhani [12], Lambert

[13], Cerveny and Joseph [14].

Based on his survey, Scacchi identifies a number

of software productivity attributes:

1. Computing resources and easy-to-access to

support system specialists

2. Contemporary software engineering tools and

techniques

3. System development aids for coordinating

software projects

4. Programming languages

5. Software project Complexity. indicated by size

of source code delivered,

6. functional coupling, and functional cohesion

7. Reuse software that supports the information

processing tasks required by the application

8. Stable system requirements and specifications

RESEARCH ARTICLE OPEN ACCESS

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 24|P a g e

9. Small, well-organized project teams

10. Experienced software development staff

However, Scacchi believes that it is not always

possible or desirable to improve software

productivity by cultivating the entire project

characteristics listed above.

Discovering factors that influence software

development productivity and relationships among

them is difficult and complicated. Our Objective n

this paper is to determine factors influencing

productivity of the software developmentin PC

platform environment by using appropriate data

mining algorithms.

II. Productivity Measure of Software

Development
In general, productivity is understood as a ratio of

outputs produced to inputs used. However,

researchers may use different outputs and inputs for

measuring productivity. IEEE Standard 1045

calculates productivity in terms of effort as an input

and lines of code or function points as output [16].

The two most common methods for measuring

complexity or size of a software development project

are Function Points and Lines of Code.

The main limitation of the LOC model is that it

depends on the accuracy of an early estimate of lines

of code. This estimate is usually based on the past

experience of the systems analyst. Certainly, most

organizations would find it difficult, if not

impossible, to locate experienced analysts who could

come up with an accurate estimate of the system size

using a LOC model [17]. A third problem with LOC

model is that it does not take into account the

resources available to the systems development team.

These include among other things the types of

language used in coding, software tools, the skills

and experiences of the team itself [18].

An alternative method for estimating systems

development effort was developed by Albrecht [3].

Albrecht introduced the concept of Function Points

(FP) to measure the functional requirements of a

proposed system. In FP modeling the size of the

system is determined by first identifying the type of

each required function in terms of inputs, outputs,

inquiries, internal files, and external interface files.

To calculate the value of function points for each

category, the number of functions in each category is

multiplied by the appropriate complexity weight.

The total systems effort is then calculated by

multiplying the sum of function points for all

categories by the Technical Complexity Factor

(TCF). The TCF is determined by assigning values

to 14 influencing project factors and totaling them.

Readers unfamiliar with the FP model are referred to

Albrecht and Gaffney [4]. Albrecht argued that FP

model makes intuitive sense to users and it would be

easier for project managers to estimate the required

systems effort based on either the user requirements

specification or logical design specification [3].

Another advantage of the FP model is that it does not

depend on a particular language. Therefore, project

managers using the FP model would avoid the

difficulties involved in adjusting the LOC counts for

information systems developed in different

languages. In this paper I have used the following

equation for calculation of productivity: Productivity

= Effort/Function Points

III. Methodology
Data Mining may be defined as the process of

finding potentially useful patterns of information and

relationships in data. As the quantity of clinical data

has accumulated, domain experts using manual

analysis have not kept pace and have lost the ability

to become familiar with the data in each case as the

number of cases increases. Improved data and

information handling capabilities have contributed to

the rapid development of new opportunities for

knowledge discovery. Interdisciplinary research on

knowledge discovery in databases has emerged in

this decade. Data mining, as automated pattern

recognition, is a set of methods applied to knowledge

discovery that attempts to uncover patterns that are

difficult to detect with traditional statistical methods.

Patterns are evaluated for how well they hold on

unseen cases. Databases, data warehouses, and data

repositories are becoming ubiquitous, but the

knowledge and skills required to capitalize on these

collections of data are not yet widespread. In this

research As a First step we used Auto-Classification

tool in SPSS Modeler which applies 11 different

algorithms shown in Figure 1. The most efficient

algorithms with highest accuracy rates are displayed

based on current data set used for analysis.

Figure 1. Auto-Classification’s Algorithms

The following is a brief description of the

algorithms suggested and displayed by Auto-

Classification as the most accurate models as shown

in Figure 2.

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 25|P a g e

Figure 2. TheMost Efficient Algorithms

Decision Trees- Decision trees and rule induction

are two most commonly used approaches to

discovering logical patterns within medical data sets.

Decision trees may be viewed as a simplistic

approach to rule discovery because of the process

used to discover patterns within data sets.

Decision tree is built through a process known

as binary recursive partitioning. This is an iterative

process of splitting the data into partitions, and then

splitting it up further on each of the branches.

Initially, you start with a training set in which the

classification label (say, "productive" or "non-

productive") is known (pre-classified) for each

record. All of the records in the training set are

together in one big box. The algorithm then

systematically tries breaking up the records into two

parts, examining one variable at a time and splitting

the records on the basis of a dividing line in that

variable (say, FP> 30 or FP<=30). The object is to

attain as homogeneous set of labels (say,

"productive" or "non-productive ") as possible in

each partition. This splitting or partitioning is then

applied to each of the new partitions. The process

continues until no more useful splits can be found.

The heart of the algorithm is the rule that determines

the initial split rule [14].

The process starts with a training set consisting

of pre-classified records. Pre-classified means that

the target field, or dependent variable, has a known

class or label: "productive" or "non-productive”. The

goal is to build a tree that distinguishes among the

classes. For simplicity, assume that there are only

two target classes and that each split is binary

partitioning. The splitting criterion easily generalizes

to multiple classes, and any multi-way partitioning

can be achieved through repeated binary splits. To

choose the best splitter at a node, the algorithm

considers each input field in turn. In essence, each

field is sorted. Then, every possible split is tried and

considered, and the best split is the one which

produces the largest decrease in diversity of the

classification label within each partition. This is

repeated for all fields, and the winner is chosen as

the best splitter for that node. The process is

continued at the next node and, in this manner, a full

tree is generated.

Artificial Neural Networks (ANN) - Artificial

neural networks are defined as information

processing systems inspired by the structure or

architecture of the brain (Caudill & Butler, 1990).

They are constructed from interconnecting

processing elements, which are analogous to

neurons. The two main techniques employed by

neural networks are known as supervised learning

and unsupervised learning. In unsupervised learning,

the neural network requires no initial information

regarding the correct classification of the data it is

presented with. The neural network employing

unsupervised learning is able to analyze a multi-

dimensional data set in order to discover the natural

clusters and sub-clusters that exist within that data.

Neural networks using this technique are able to

identify their own classification schemes based upon

the structure of the data provided, thus reducing its

dimensionality. Unsupervised pattern recognition is

therefore sometimes called cluster analysis [3], [16],

and [17].

Supervised learning is essentially a two stage

process; firstly training the neural network to

recognize different classes of data by exposing it to a

series of examples, and secondly, testing how well it

has learned from these examples by supplying it with

a previously unseen set of data. A trained neural

network can be thought of as an "expert" in the

category of information it has been given to analyze.

It provides projections given new situations of

interest and answers "what if" questions.

There are disadvantages in using ANN. No

explanation of the results is given i.e. difficult for the

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 26|P a g e

user to interpret the results. They are slow to train

due to their iterative nature. Empirical studies have

shown that if the data provided does not contain

useful information within the context of the focus of

the investigation, then the use of neural networks

cannot generate such information any more than

traditional analysis techniques can. However, it may

well be the case that the use of neural networks for

data mining allows this conclusion to be reached

more quickly than might ordinarily be the case.

In the last two decades, Artificial Neural

Networks have been used for predictions in diverse

applications. In recent years, a number of studies

have used neural networks in various stages of

software development. Hakkarainen et al, estimated

software size by training an ANN. They used

structured specification descriptions as input and

Demarco Function Bang, Albrecht’s Function Points

and Symon’s mark II Function Points size metrics as

output. The results of their study indicated that ANN

could be used successfully to estimate software size

[20]. Srinivasan and Fisher compared two

approaches 1) a back propagation neural network and

2) Regression Trees, using Boehm’s historical

database. Their experiments indicated that neural

network and regression trees are competitive with

model-based approaches [21]. Finnie and Wittig

applied artificial neural networks (ANN) and case-

based reasoning (CBR) to estimate software

development effort [22]. They used a data set from

the Australian Software Metrics Association. ANN

was able to estimate software development effort

within 25% of the actual effort in more than 75% of

the cases, and with a MAPE of less than 25%.

Carolyn Mair et al, used 67 software projects derived

from a Canadian software house to evaluate

prediction performances of regression, Rule

Induction (RI), CBR and ANN techniques [23]. The

results of the study showed considerable variation

between the 4 models. MAPE for RI ranged from

86% to140%. MAPE for regression ranged from

38% to 100%. MAPE for CBR ranged from 43% to

80% and for ANN ranged from 21% to 66%. MAPE

results suggest that ANN seem to be the most

accurate and RI is the least accurate technique [23].

Shukla conducted a large number of simulation

experiments using genetically trained neural

networks. He used a merged database comprising 63

projects, and Kemerer database comprising 15

projects. The results indicated a significant

estimation improvement over Quick Propagation

Network and Regression Trees approaches. Shukla

concluded that there is still a need to apply neural

networks to diverse projects with wide range of

attributes because it is “unclear which techniques are

most valuable for a given problem. …, experimental

comparison using rigorous evaluation methods is

necessary” [24].

The Multilayer Perceptron (MLP) is one of the

most widely implemented neural network topologies.

In terms of mapping abilities, the MLP is believed to

be capable of approximating arbitrary functions. This

has been important in the study of nonlinear

dynamics, and other function mapping problems.

MLPs are normally trained with the back

propagation algorithm. Two important characteristics

of the Multilayer Perceptron are:

It’s smooth nonlinear Processing Elements

(PEs). The logistic function and the hyperbolic

tangent are the most widely used. Their massive

interconnectivity i.e. any element of a given layer

feeds all the elements of the next layer.

1. The Multilayer Perceptron is trained with

error correction learning, which means that the

desired response for the system must be known.

Back propagation computes the sensitivity of a cost

function with respect to each weight in the network,

and updates each weight proportional to the

sensitivity.

IV. DATA
The data used in this research project was

collected by The International Software

Benchmarking Standards Group (ISBSG). The

group gathered information from 1238 software

projects from around the world. Projects cover a

broad cross-section of the software industry. In

general, they have a business focus. The projects

come from 20 different countries. Major contributors

are the United States (27%), Australia (25%),

Canada (11%), United Kingdom (10%), Netherlands

(7%), and France (7%). Major organization types are

insurance (19%), government (12%), banking (12%),

business services (10%), manufacturing (10%),

communications (7%), and utilities (6%).

Projects types include enhancement projects

(50%), new developments (46%), and 4% are re-

developments. Application types consist of

Management Information Systems (38%),

transaction/production systems (36%), and Office

Information Systems (5%). Nearly 3% are real-time

systems.

Over 70 programming languages are

represented. 3GLs represent 57% of projects, 4GLs

37%, and application generators 6%. Major

languages are COBOL (18%), C/C++ (10%), Visual

Basic (8%), Cobol II (8%), SQL (8%), Natural (7%),

Oracle (7%), PL/I (6%), Access (3%), and Telon

(3%). Platform for projects include mainframe

projects (54%), midrange (24%), and

microcomputers (22%).

Sixty-two (62%) of projects use a standard

methodology that was developed in-house), 21% use

a purchased methodology. Only 12% do not follow a

methodology. The use of CASE tools ranges from

21% of projects using upper CASE, down to 10% for

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 27|P a g e

integrated CASE tools. CASE tools of some type are

used in 51% of projects. Traditional system

modelling techniques (data modelling, process

modelling, event modelling, business area

modelling) are used in 66% of projects. They are the

only techniques listed in 27% of projects; 39% use a

combination of traditional modelling and other

techniques. The most common single technique is

data modelling, used in 59% of projects. RAD/JAD

techniques are used in 28% of projects. Object

oriented techniques are used in 14% of projects.

Prototyping is used in 29% of projects.

Data in the ISBSG database had to be cleaned

and pre-processed in order to get, relevant and

complete data for analysis. Records with missing

value of attributes were excluded and the character

values of text attributes or variables were

transformed to numeric values. Function points

count, total work effort in hours, team size,

development platform (mainframe, mid-size, PC),

language type (3GL, 4GL, Application Generator

etc.), whether a software development methodology

was used, programming language and development

type (new, enhancement, etc.) attributes were

considered for analysis. Productivity attribute was

calculated by dividing total work effort in hours by

count of function points. Once the data was pre-

processed, 468 usable projects were available for

analysis.

V. Data Analysis
In a previous study we created a pivot table that

displayed the productivity of software development

by platform and programming type. Table 1 and

Figure 3 shows the results.

Table 1. Pivot table for Average Productivity, Development Platform, Language Type, and Methodology

Methodology (All)

 Average of Productivity Language Type

 Development Platform Application Generator 4GL 3GL Grand Total

Mainframe 10.51 5.91 13.62 8.04

Client-Server 16.18 12.39 10.65 14.19

Micro Computer 19.19 13.77 15.07 17.78

Grand Total 16.72 10.28 14.71 14.24

Figure 3. Average Productivity, Development Platform, Language Type, and Methodology

As the displayed information indicates, in terms

of hours spent per function point, the Main Frame

platform is most productive and the PC platform the

least productive among the three platforms. This

result is in conflict with findings of previous

research. Therefore, the motivation for further and

more detailed study of PC platform and determining

which development factors are contributing or not

contributing to productivity in PC development

environment.

Data in theISBSG databasehad to becleaned

andpre-processed in order toget, relevantand

0.00

5.00

10.00

15.00

20.00

25.00

Mainframe Client-Server Micro Computer

Application Generator

4GL

3GL

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 28|P a g e

complete data for analysis. Records with missing

value of attributes were excluded and the

charactervalues oftext attributes or variables

weretransformed to numericvalues. Function points

count,team size, development platform (mainframe,

mid-size, PC), languagetype(3GL,4GL,Application

Generatoretc.), whetherasoftwaredevelopment

methodologywas used, programminglanguage and

development type (new, enhancement, etc.) attributes

were considered for

analysis.Productivityattributewas calculated

bydividingtotal work effort in hours bycount of

function points. Oncethe data was pre-processed, 468

usable projects were available for analysis.

An exploratory study was conducted using

regression analysis on numeric productivity values.

As the following tables indicates only the

programming language statistically is significant (t of

-2.717) and in an inverse relationship with

productivity. Adjusted R
2
 is 0.047 which is really

low and means that linear regression cannot explain

variations in productivity.

Table 2. Regression Analysis Model

VI. Decision Tree Analysis
Before using this algorithm data has been

balanced and partitioned into training and testing

samples. You can use Balance nodes to correct

imbalances in dataset. In our dataset balancing is

used in order to make the number of productive and

non-productive cases close to equal. SBGI Dataset is

partitioned into 70% for training and 30% for testing

the models.Figure 4 shows that programming

language is the most important variable and function

point is the least important. While the importance of

programming language is theoretically make sense

and confirms the previous findings, the lack of

importance for function points is surprising. The

function point represents the complexity and size of a

software project and you may expect that it should

have a great influence on productivity of software

development.

Figure 4. Importance of variables based on CRT Analysis

The following diagrams displays the confusion matrix, gain chart and decision tree rules created by the

model. Both the confusion matrix and the gain chart indicates CRT as a good model with 72% accuracy.

Figure 5. CRT Confusion Matrix

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 29|P a g e

Figure 6. CRT Gain Chart

Figure 7. CRT Decision Tree Rules

VII. Artificial Neural Network Analysis
The same balancing and partition options used for ANN analysis. A Multilayer Perceptron network was

used for this analysis. Figure 8 shows the basic structure of this network.

Figure 8. The Network Model

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 30|P a g e

The ANN model resulted in a different ranking of important variables. Function Points is the most

important followed by Team Size and Programming Language. This result seems to be similar to the results of

previous results. Confusion matrix shows lower accuracy for ANN model (69%) than accuracy for CRT model

(72%). Figure 11 represents the gain chart for ANN model.

Figure 9.Importance of variables based on ANN Analysis

Figure 10. ANN Confusion Matrix

Figure 11.ANN Gain Chart

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 31|P a g e

VIII. Conclusion
The two major classification algorithms CRT

and ANN that were recommended by the Auto

Classifier tool in SPSS Modeler used for determining

the most important variables (attributes) of software

development in PC environment. While the accuracy

of classification of productive versus non-productive

cases are relatively close (72% vs 69%), their

ranking of important variables are different. CRT

ranks the Programming Language as the most

important variable and Function Points as the least

important. On the other hand, ANN ranks the

Function Points as the most important followed by

team size and Programming Language.

Let us consider the results of CRT which is more

accurate in terms of classification. In CRT model

methodology, application type, language type, team

size, and specially function points which represents

the size and complexity of the software development

are not indicated as important variable. Lack of or

poor use methodology, which is also listed as the

least important variable in ANN model, has clearly

an effect on productivity of software development

and may explain the lower productivity in PC

platform application. However, the low importance

of team size and function points is puzzling.

There is a need for using a larger sample size

and may be from different repositories to validate or

reject the results of this study. Conducting research

on Mainframe platform and comparing the results

with the results of the PC platform would also clarify

further the productivity issue.

REFRENCES
[1] Boehm, B.W., "Improving Software

Productivity", Computer, 20(8), 43-58,

1987.

[2] Scacchi, W., “Understanding Software

Productivity”, Advances in Software

Engineering and Knowledge Engineering,

Volume 4, pp. 37-70, 1995.

[3] Albrecht, A.,

"MeasuringApplication Development

Productivity", Proc. Joint

SHARE/GUIDE/IBM Application

Development Symposium (October, 1979),

83-92.

[4] Albrecht, A. and J. Gaffney, "Software

Function, Source Lines of Code, and

Development Effort Prediction: A Software

Science Validation", IEEE Trans. Soft.

Engr. SE-9(6), (1983), 639-648.

[5] Boehm, B., Software Engineering

EconomicsPrentice-Hall, Englewood Cliffs,

NJ (1981)

 [6] Boehm, B., M. Penedo, E.D. Stuckle, R.D.

Williams, and A.B. Pyster, "A Software

Development Environment for Improving

Productivity", Computer 17(6), (1984), 30-

44.

[7] Boehm, B. and R.W. Wolverton, "Software

Cost Modelling: Some Lessons Learned",

 J. Systems and Software 1(1980),

195-201.

[8] Bailey, J. and V. Basili, "A Meta-Model for

Software Development Resource

Expenditures", Proc. 5th. Intern. Conf. Soft.

Engr., IEEE Computer Society, (1981),

107-116.

[9] Vosburg, J., B. Curtis, R. Wolverton, B.

Albert, H. Malec, S. Hoben and Y. Liu

"Productivity Factors and Programming

Environments", Proc. 7th. Intern. Conf.

Soft. Engr., IEEE Computer Society,

(1984), 143-152.

[10] Lawrence, M.J., "Programming

Methodology, Organizational Environment,

and Programming Productivity", J. Systems

and Software, 2(1981), 257-269.

[11] Cusumano, M. and C.F. Kemerer, "A

Quantitative Analysis of U.S. and Japanese

Practice and Performance in Software

Development", Management Science,

36(11), (1990),

[12] Thadhani, A.J., "Factors Affecting

ProgrammerProductivityDuringApplication

Development", IBM Systems J. 23(1),

Abbas Heiat Nafisseh Heiat, Int. Journal of Engineering Research and Applicationswww.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 4, (Part -7) April 2015, pp.23-32

 www.ijera.com 32|P a g e

(1984), 19-35.

[13] Lambert, G.N., "A Comparative Study of

System Response Time on Programmer

Development Productivity", IBM Systems J.

23(1), (1984), 36-43.

[14] Cerveny, R.P., and D.A. Joseph, "A Study of

the Effects of Three Commonly Used

Software Engineering Strategies on

Software Enhancement Productivity",

Information & Management, 14, (1988),

243-251.

[15] Rajiv D. B,Srikant M. D., and Chris F.

Kemerer, “Factors Affecting Maintenance

Productivity: An Exploratory Study”,

Proceedings of the 8th International

Conference on Information Systems (ICIS),

Pittsburgh, Pennsylvania, pp. 160-175,

December 1987.

[16] IEEE Standard for Software Productivity

Metrics, IEEE Std. 1045-1992, IEEE

Standards Board, 1993.

[17] Low, G. C., and D. R. Jeffery, "Function

Points in the Estimation and Evaluation of

the Software Process," IEEE Transactions

of Software Engineering, January 1993, 64-

71.

[18] Vicimanza, S. S., T. Mukhopadhyay, and J.

J. Prietula, "Software-Effort Estimation: An

Exploratory Study of Expert Performance,"

Information Systems Research, 243-262,

December 1991.

[19] Bigus, J. P., Data Mining with Neural

Networks, McGraw-Hill, New York, 1996.

[20] Hakkarainen J., P. Laamamen and R. Rask,

“Neural Networks in Specification Level

Software Size Estimation”, Neural Network

Applications, P. K. Simpson, IEEE

technology Update Series, pp. 887-895,

1993.

[21] Srinivasan K. and D. Fisher,

"MachineLearning Approaches to

Estimating Software Development Effort",

IEEE Trans. Soft. Eng., vol. 21, no. 2, Feb.

1995, pp. 126-137.

[22] Finnie G.R. and G. E. Wittig, “AI Tools for

Software Development Effort Estimation”,

Software Engineering and Education and

PracticeConference, IEEE Computer

Society Press, pp. 346-353, 1996.

[23] Mair C., G. Kadoda, M.Lefley, K.Phalp C.

Schofield1, M. Shepperd and S. Webster

“An Investigation of Machine Learning

Based Prediction Systems”, Empirical

SoftwareEngineering Research Group,

http://dec.bmth.ac.uk/ESERG, 9 July, 1999.

[24] Shukla K. K., “Neuro-genetic prediction of

software development effort”, Information

and Software Technology, 42 (2000) 701-

713.

[25] Brainstorm, “Overview of Neural

Computing”, 2001, www.brainstorm.co.uk

http://www.brainstorm.co.uk/

